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Abstract
The study deals with linear analysis of the stability of the interface of a radially displaced fluid
(at a constant flow rate or pressure) in the Hele–Shaw cell. As distinct from other studies, the
calculations have been performed considering finite size of the system and nonzero viscosity of
the displacing fluid. Consequently, earlier results have been considerably refined. An interesting
feature—varying sensitivity of the system to perturbations with changing control
parameters—has been detected and analyzed. Therefore, this system can be viewed as a specific
filter which picks harmonics of certain frequencies out of random mechanical effects and
amplifies them.

1. Introduction

The displacement of one fluid by another fluid can be
highly unstable. For example, if a less viscous fluid
displaces a more viscous one during their horizontal movement
between parallel plates spaced a short distance (the Hele–
Shaw cell), the interface between the fluids develops a finger-
like appearance [1–4]. This phenomenon is extensively
studied [2–7] because the regular features observed here
are very interesting from the viewpoint of physics of
nonequilibrium processes and are sufficiently universal (a
similar situation is observed, e.g., during formation of
dendrite structures) [4]. An important particular case of the
phenomenon in hand is the so-called radial displacement when
the displacing fluid flows from the center of the Hele–Shaw
cell (figure 1).

This unstable process was described analytically for
the first time in [8, 9]. Although the solutions provided
the qualitative description of the process, they had some
drawbacks. For example, according to the obtained results, the
initial circle interface is always stable to small perturbations of
the translation type (when interface is displaced from the center
as a unit), whereas in experiments, in contrast, this type of
instability is very frequent. This contradiction probably is due
to the fact that the problem was solved on the assumption of an
infinite cell. Furthermore, it was assumed that the pressure p

Figure 1. Radial displacement in the Hele–Shaw cell.

changes abruptly at the interface:

�p = 2σ/b + σ K , (1.1)

where σ is the surface tension, K is the surface curvature in
the motion plane, and b is the cell thickness. Thus, the motion
of the fluid was neglected and the classical Laplace’s formula
was used. Whereas the actual curvature was taken into account
in the motion plane, in the direction perpendicular to the flow
the interface was assumed simply to be a half-circle with
the diameter equal to the distance between the cell surfaces.
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Obviously, expression (1.1) is the simplest and a rather rough
assumption. A more rigorous condition should be sought by
solving the equation for the motion of two fluids taking into
account wettability of the walls, which have an influence on the
shape of the moving interface. The authors of [10] performed
such asymptotic analysis of the three-dimensional problem on
a slow motion of the front of one fluid in another fluid at a
velocity Vn. It was assumed that the latter fluid fully wetted
the walls and left a thin film on the walls as it was displaced.
The analysis led to the following approximate formula for the
pressure jump:

�p = 2σ/b + αV γ
n + βK , (1.2)

where α, β and γ are some parameters (according to [10],
α = 3.8 2σ

b (μ2

σ
)γ , β = πσ/4 and γ = 2/3, where μ2 is the

viscosity of the displaced fluid). As distinct from (1.1), this
expression explicitly takes into account the effect of the fluid
velocity on the interface shape (the second term) and includes
the correction for the change of the surface shape with the cell
thickness (the third term).

A linear analysis of the stability in the case of the radial
displacement was performed in [11–14] using the boundary
condition (1.2) and taking into account finite boundaries of
the cell. Results of these studies do not clarify the effect of
the corrections in (1.2) on the stability since it was assumed,
unlike in [8, 9], that the displacing fluid was injected at a
constant pressure rather than at a constant velocity (volume
flow rate). It is interesting to note also that, unlike in [8, 9],
in studies [11–14] the interface always proved to be unstable
to small perturbations of the translation type. A drawback of
these studies is also the fact that the viscosity of the displacing
fluid (and the size of the fluid source) was disregarded for
simplicity of calculation. Therefore, the calculation results
cannot be used for analysis of the motion of fluids having
similar viscosities, but it is in this case, as we shall show below,
that some interesting regularities are possible.

Thus, the above short review of past studies leads to the
conclusion that the theoretical analysis of the linear stability of
the radial displacement is far from complete. The full solution
of this problem and its analysis are the objectives of the present
study.

2. Problem statement

We shall consider a slow quasistationary displacement of a
fluid by another fluid in the Hele–Shaw cell. Both fluids are
assumed to be immiscible and incompressible. The motion is
quasi-two-dimensional and all characteristics of the flow are
averaged over the cell thickness (the third dimension—the cell
thickness—is present only in (1.2)). These approximations are
traditional for problems of this type [8–14].

The pressure field in both fluids satisfies the Laplace
equation:

∇2 p1 = 0, (2.1)

∇2 p2 = 0. (2.2)

This is the consequence of the Darcy law Vi = −Mi∇ pi

(Mi = b2/12μi , μi being the fluid viscosity) and the flow

continuity condition ∇Vi = 0. Here pi is the pressure in
the fluid (i = 1, 2 for the displacing or the displaced fluid
respectively) and Vi is the fluid velocity.

The pressures satisfy the following boundary conditions:

− M1∂p1/∂n|R0 = Q

2π R0
(2.3a)

or
p1|R0 = p0, (2.3b)

M1∂p1/∂n|r = M2∂p2/∂n|r , (2.4)

p1 − p2|r = 2σ

b
+ αV γ

n + βK , (2.5)

p2|R∞ = 0, (2.6)

where n is the normal to the surface; R0 is the radius of the hole
through which the displacing fluid is injected at a constant flow
rate (Q, cm2 s−1) or a constant pressure (p0, Pa); R∞ is the
size of the Hele–Shaw cell occupied by the displaced fluid; r
is the equation for the interface of two fluids.

Equations (2.3a) and (2.3b) determine two basic methods
of the displacement, namely, at a constant flow rate of
the displacing fluid or at a constant pressure respectively.
Equation (2.4) is the requirement for a continuous velocity of
the fluids across the interface. Equation (2.5) is discussed in
section 1. The pressure of the displaced fluid on the outer
boundary of the cell is assumed to be constant (2.6) and zero
for convenience of calculation (in this connection pi can be
taken as excess pressures relative to the external pressure).

We shall assume that an arbitrarily small distortion of the
initially round interface can be presented as a superposition
of harmonic functions of the form cos(nϕ). Considering the
linear order approximation, it suffices to discuss the behavior
of one function so as to understand the stability of the front. In
the polar system of coordinates the equation for the perturbed
surface is written in the form

r = R + δ cos(nϕ), (2.7)

where R is the radius of the unperturbed surface; δ is the
perturbation amplitude; n is the perturbation frequency (see
figure 1); ϕ is the polar angle. The curvature in the linear order
is given in the form

K = 1

R
+ (n2 − 1)

R2
δ cos(nϕ). (2.8)

In the boundary condition (2.4) ∂p/∂n can be written as
components using the formula

∂p/∂n = ∇ pen,

where ∇ p = ∂p
∂r ir + 1

r
∂p
∂ϕ

iϕ , en = ∇�
|∇�| , � = r − R−δ cos(nϕ)

and en is the unit normal to the surface � = 0.
As a result, we can write with an accuracy of the first

power of δ

∂p/∂n = 1
√

1 + (δn/r)2 sin2(nϕ)

(
∂p

∂r
+ δn

r 2

∂p

∂ϕ
sin(nϕ)

)

≈
(

∂p

∂r
+ δn

r 2

∂p

∂ϕ
sin(nϕ)

)
. (2.9)

Using (2.9) and the Darcy law, we can write

Vn|r = −Mi

(
∂pi

∂r

∣∣∣∣
r

+ δn

r 2

∂pi

∂ϕ
sin(nϕ)

∣∣∣∣
r

)
. (2.10)
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3. Solution of the problem on the linear stability of
the front

Represent the pressure as a power series of δ:

pi(r, ϕ) = p0
i (r) + p1

i (r, ϕ)δ. (3.1)

The expression (2.10) can be expanded near the boundary
R. Then in the linear order we have

Vn|R+δ cos(nϕ) = −Mi

(
∂p0

i

∂r

∣∣∣∣
R

+ ∂2 p0
i

∂r 2

∣∣∣∣
R

δ cos(nϕ)

+ ∂p1
i

∂r

∣∣∣∣
R

δ

)
, (3.2)

V γ

n
|R+δ cos(nϕ) =

(
−Mi

∂p0
i

∂r

∣∣∣∣
R

)γ [
1 + γ

(
∂2 p0

i /∂r 2
∣∣

R

∂p0
i /∂r

∣∣
R

× δ cos(nϕ) + ∂p1
i /∂r

∣∣
R

∂p0
i /∂r

∣∣
R

δ

)]
. (3.3)

Substitute (3.1) and (3.3) into equations (2.1)–(2.6) and
expand the terms in (2.4) and (2.5) into a Taylor series near R.
Then, equating the coefficients in the expressions at the zeroth
and the first order in δ, we obtain two sets of equations for
calculation of p0

i and p1
i :

(1)
∇2 p0

1 = 0, (3.4)

∇2 p0
2 = 0. (3.5)

With boundary conditions

−M1
∂p0

1

∂r

∣∣∣∣
R0

= Q

2π R0
(3.6a)

or

p0
1

∣∣∣∣
R0

= p0, (3.6b)

M1
∂p0

1

∂r

∣∣∣∣
R

= M2
∂p0

2

∂r

∣∣∣∣
R

, (3.7)

p0
1
− p0

2

∣∣
R

= 2σ

b
+ β

R
+ α

(
−M2

∂p0
2

∂r

∣∣∣∣
R

)γ

, (3.8)

p0
2

∣∣
R∞

= 0, (3.9)

(2)
∇2 p1

1 = 0, (3.10)

∇2 p1
2 = 0. (3.11)

With boundary conditions

M1
∂p1

1

∂r

∣∣∣∣
R0

= 0 (3.12a)

or
p1

1

∣∣
R0

= 0, (3.12b)

M1

(
∂2 p0

1

∂r 2

∣∣∣∣
R

cos(nϕ) + ∂p1
1

∂r

∣∣∣∣
R

)

= M2

(
∂2 p0

2

∂r 2

∣∣∣∣
R

cos(nϕ) + ∂p1
2

∂r

∣∣∣∣
R

)
, (3.13)

(
∂p0

1

∂r

∣∣∣∣
R

− ∂p0
2

∂r

∣∣∣∣
R

)
cos(nϕ) + (

p1
1

∣∣
R

− p1
2

∣∣
R

)

= γα

(
−M2

∂p0
2

∂r

∣∣∣∣
R

)γ (
∂2 p0

2/∂r 2
∣∣

R

∂p0
2/∂r

∣∣
R

cos(nϕ)

+ ∂p1
2/∂r |R

∂p0
2/∂r |R

)
+ β(n2 − 1)

R2
cos(nϕ), (3.14)

p1
2

∣∣∣∣
R∞

= 0. (3.15)

The general solution of the Laplace equations (3.4)–(3.5)
and (3.10)–(3.11) in the zeroth and the first order is written
respectively as

p0
i (r) = A0

i ln(r) + B0
i , (3.16)

p1
i (r, ϕ) = A1

i ln(r) + B1
i + rn(ai cos(nϕ) + bi sin(nϕ))

+ r−n(ci cos(nϕ) + di sin(nϕ)). (3.17)

3.1. A constant flow rate of the injected fluid

Substituting (3.16)–(3.17) into (3.4)–(3.6a), (3.7)–(3.12a) and
(3.13)–(3.15) and equating the terms at the corresponding
powers of the cosines and the sines, it is possible to determine
the unknown coefficients in (3.16)–(3.17), some of which
(A1

i , B1
i , bi , di ) prove to be zero. As a result, the solution is

written as

p0
1 = − Q

2π M1
ln(r/R) − Q

2π M2
ln(R/R∞)

+ 2σ

b
+ β

R
+ α

(
Q

2π R

)γ

, (3.18)

p0
2 = − Q

2π M2
ln(r/R∞), (3.19)

p1
1 = a1rn cos(nϕ)[1 + (R0/r)2n], (3.20)

p1
2 = a2rn cos(nϕ)[1 − (R∞/r)2n], (3.21)

where

a1 = R−n

[
Q

2π R

M2 − M1

M1 M2
+ β(n2 − 1)

R2
− αγ

R

(
Q

2π R

)γ ]

×
[[

1 + (R0/R)2n
] + M1

M2

1 − (R/R∞)2n

1 + (R/R∞)2n

× [1 − (R0/R)2n] + αγ n

(
Q

2π R

)γ 2π M1

Q

× [
1 − (R0/R)2n

] ]−1

a2 = R−n

[
Q

2π R

M2 − M1

M1 M2
+ β(n2 − 1)

R2
− αγ

R

(
Q

2π R

)γ ]

×
[

M2

M1

1 + (R0/R)2n

1 − (R0/R)2n

[
1 + (R∞/R)2n

]

− [1 − (R∞/R)2n] + αγ n

(
Q

2π R

)γ 2π M2

Q

× [
1 + (R∞/R)2n

] ]−1

.

Let us determine the stability radius of the interface. For
this purpose, substitute (3.18)–(3.21) into (3.2). Write the

3
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interface velocity in the form

Vn

∣∣
R+δ cos(nϕ)

= Ṙ + δ̇ cos(nϕ), (3.22)

where Ṙ is the velocity of the unperturbed interface and δ̇

is the perturbation growth rate. Grouping the terms at the
corresponding powers of δ, we can write

Ṙ = Q/2π R, (3.23)

δ̇/δ

Ṙ/R
= −1 − n

(
M2

M1
− 1

)

×
[

1 +
(

(n2 − 1)
β

R
− αγ

(
Q

2π R

)γ )
2π

Q

M1 M2

M2 − M1

]

×
[

M2

M1

1 + (R0/R)2n

1 − (R0/R)2n
+ 1 − (R/R∞)2n

1 + (R/R∞)2n

+ nαγ

(
Q

2π R

)γ 2π M2

Q

]−1

. (3.24)

Notice that at R∞ → ∞, R0 → 0, α = 0 and β = σ

expression (3.24) coincides with the classical expression given
in [9].

The critical size of the interface stability RS when
the perturbation growth rate δ̇ reverses sign from negative
(damping) to positive (growth) can be determined from the
equation

δ̇/δ

Ṙ/R
= 0 (3.25)

by solving it for R.

3.2. A constant pressure of the injected fluid

The solution is similar to the one described above (the only
difference is the boundary conditions (3.6b) and (3.12b)). As a
result, it is possible to determine the pressure of each fluid.

For the zero order

p0
1 = (M2/M1)C0 ln(r/R0) + p0, (3.26)

p0
2 = C0 ln(r/R∞), (3.27)

where C0 satisfies the equation

Cγ

0 α (−M2/R)γ − C0
[
(M2/M1) ln(R/R0) − ln(R/R∞)

]

+ 2σ/b + β/R − p0 = 0. (3.28)

For the first order

p1
1 = a1rn cos(nϕ)[1 − (R0/r)2n], (3.29)

p1
2 = a2rn cos(nϕ)[1 − (R∞/r)2n], (3.30)

where

a1=R−n

[
−C0

R

M2 − M1

M1
+ β(n2 − 1)

R2
− αγ

R

(
− M2C0

R

)γ ]

×
[[

1 − (R0/R)2n
] + M1

M2

1 − (R/R∞)2n

1 + (R/R∞)2n

× [
1 + (R0/R)2n

] − M1

M2

αγ n

C0

(
− M2C0

R

)γ

× [
1 + (R0/R)2n

] ]−1

a2 = R−n

[
−C0

R

M2 − M1

M1
+ β(n2 − 1)

R2

− αγ

R

(
− M2C0

R

)γ ][
M2

M1

1 − (R0/R)2n

1 + (R0/R)2n

× [
1 + (R∞/R)2n

] − [
1 − (R∞/R)2n

] − αγ n

C0

×
(

− M2C0

R

)γ [
1 + (R∞/R)2n

]]−1

.

Substituting (3.26), (3.27), (3.29) and (3.30) into (3.2), we
have

Ṙ = −M2C0/R, (3.31)

δ̇/δ

Ṙ/R
= −1 − n

(
M2

M1
− 1

) [
1 −

(
(n2 − 1)

β

RC0

− αγ (−M2/R)γ Cγ−1
0

)

× M1

M2 − M1

][
M2

M1

1 − (R0/R)2n

1 + (R0/R)2n
+ 1 − (R/R∞)2n

1 + (R/R∞)2n

− nαγ (−M2/R)γ Cγ−1
0

]−1

. (3.32)

Similar calculations were performed in [11–14], but the
viscosity of the displacing fluid and the size of the fluid source
were disregarded. Also, it was assumed that γ = 1 [11, 12] and
β = σ [11–14] in (2.5), considerably simplifying the solution.
If all the aforementioned simplifications are taken into account,
(3.32) transforms to the solutions given in [11–14].

4. Analysis of results

4.1. A constant flow rate of the injected fluid

As discussed in section 3.1, the critical size RS of the linear
stability of the interface between two fluids can be found by
solving equation (3.25) for R. This cannot be done analytically.
Therefore, a numerical analysis was performed and main
results of this analysis are discussed below.

Figure 2(a) shows RS as a function of the cell size R∞.
It is seen that RS grows and quickly reaches saturation as
R∞ increases. The inset presents the difference between the
calculated critical radius and the radius calculated in [9] using
boundary condition (1.1) instead of (1.2) and the assumption
of infinite size of the cell. It is seen that, although the results
approach as R∞ increases, the approximation [8, 9] can lead
to highly overestimated (up to 30 percent) values at the size of
the fluid source and the cell used in the experiments.

The calculations in figure 3(a) demonstrate that the critical
size of the stability decreases with increasing flow rate. This is
a direct indication that the degree of the system nonequilibrium
is the reason for the instability. It can also be shown
numerically that the stabilizing factor is the surface tension
and the instability is observed only when a less viscous fluid
displaces a more viscous fluid (M1 > M2).1

1 A more mobile and less inert fluid tends to outrun the other fluid during their
motion under the action of the pressure gradient. This is very much like the
case if two fluids having different densities are placed in the gravity field—the
situation is unstable only if the less inert/dense fluid is below.

4
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Figure 2. Dependence of the critical radius RS on the cell size R∞ at
(a) a constant volume flow rate Q × b = 0.06 ml s−1 (the insets show
the dependence of the relative deviation of the critical radius RS from
the critical radius Rinf

S
found on the assumption of R∞ → ∞ [8, 9])

and (b) a constant pressure p0 = 85 Pa. The curves were plotted
taking R0 = 2 mm, b = 1, 5 mm, σ = 31.3 × 10−3 N m−1,
μ1 = 1.72 × 10−5 kg m−1 s−1 and μ2 = 230 × 10−3 kg m−1 s−1 (the
viscosity and the surface tension correspond to those of air and castor
oil).

Of special interest is the case when the perturbation
frequency n equals unity (a perturbation of the translation
type). Here formula (3.24) is considerably simplified and the
critical radius can be expressed explicitly:

RS = R0

[
(M2/M1)(R∞/R0)

2 + 1

1 − M2/M1

]1/2

. (4.1)

Notice first that when R∞ → ∞ and R0 → 0, in line
with (4.1) RS tends to infinity and the system is stable with
respect to translation. This limit was considered in [8, 9].
When finiteness of the cell is introduced, the reason for the
instability is that only in this case an asymmetry appears in
the system during translation of the displaced fluid relative
to the center of the system: the pressure differential is larger
in the displacement direction and smaller in the opposite

Figure 3. Dependence of the critical radius RS on (a) the volume
flow rate Qb and (b) the source pressure p0. The curves were plotted
taking the same parameters as in figure 2, R∞ = 15 cm.

direction. Consequently, a positive feedback is formed
between the motive force and the displacement, leading to
further development of the instability.

According to (4.1), the most important parameter
influencing the critical radius of the translation stability is
the viscosity ratio M2/M1. If M2/M1 = 0, the interface
becomes unstable immediately at the hole exit and the region
of the linear instability of the interface (R0, RS) is expanded
rather quickly (see also figures 4 and 5) with increasing
M2/M1. It should be noted in this connection (see the insets in
figures 4 and 5) that the translation instability dominates in the
development of the interface (at the perturbation with n = 1RS

is the smallest as compared with its values at perturbations
with other n) if the viscosity of the displacing fluid is much
lower than the viscosity of the displaced fluid (e.g. when gas
displaces a fluid).

Instabilities due to harmonics with n > 1 become
dominant starting from some M2/M1 values. As can be seen
from figures 4 and 5, the viscosity ratio can be selected such
that the system will not undergo the instability with respect

5
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Figure 4. Dependence of RS/R0 on M2/M1 at
(a) βM2/Q = 10−4 m and (b) βM2/Q = 10−3 m. The curves were
plotted taking R∞ = 25 cm and R0 = 2 mm.

to the first harmonic and will lose its stability immediately
with respect to the second harmonic. If M2/M1 increases
further, the third, the fourth, the fifth etc harmonics are put to
the forefront. Thus, according to the numerical calculations,
the ratio of the fluid viscosities can be selected such that
the stability is lost starting from an arbitrary number of the
perturbation frequency.

This feature is very interesting from the viewpoint of the
theory and experimental applications. Therefore, for complete
analysis it seems reasonable to solve this problem analytically
at least for some instances allowing calculations in the general
form. We shall take the approximations used in [9], i.e. R∞ →
∞ and R0 → 0, α = 0 and β = σ . Then (3.24) is rearranged
to the form
δ̇/δ

Ṙ/R
= n

1 − M2/M1

1 + M2/M1
− 1 − n(n2 − 1)

× 2πσ

Q R

M2

1 + M2/M1
. (4.2)

The critical size of the stability loss can be expressed
explicitly from expression (4.2):

RS = n(n2 − 1) 2πσ
Q

M2
1+M2/M1

n 1−M2/M1

1+M2/M1
− 1

. (4.3)

Figure 5. Dependence of RS/R0 on M2/M1 at
(a) βM2/Q = 10−4 m and (b) βM2/Q = 10−3 m. The curves were
plotted taking R∞ = 100 cm and R0 = 2 mm.

The RS value should be positive and, according to (4.3),
this is possible only if the condition

M2/M1 < (n − 1)/(n + 1) (4.4)

is fulfilled.
It follows from (4.2) that if condition (4.4) is not met, δ̇

is negative at any R, i.e. the system is stable with respect to
the nth harmonic. Using (4.3) we can find the viscosity ratio
at which the instability takes place at one and the same RS

with respect to two arbitrary perturbation frequencies n1 and
n2 (essentially the intersections of the curves in figures 4 and 5)

n1(n2
1 − 1)

n1
1−M2/M1

1+M2/M1
− 1

= n2(n2
2 − 1)

n2
1−M2/M1

1+M2/M1
− 1

or after the rearrangement

M2

M1
= n1n2(n2

2 − n2
1) − n2(n2

2 − 1) + n1(n2
1 − 1)

n1n2(n2
2 − n2

1) + n2(n2
2 − 1) − n1(n2

1 − 1)
. (4.5)

Let n2 > n1, then in accordance with (4.4) we can write

M2

M1
<

n1 − 1

n1 + 1
<

n2 − 1

n2 + 1
.
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Figure 6. Possible sequence of structures during displacement in the Hele–Shaw cell at different viscosity ratios M2/M1. The parameters are
similar to those used in figure 4 (a).

It can be concluded from the last inequality and (4.5) that
if n1 is fixed the perturbation frequency n2 can acquire values
at which the relationship

n1n2(n2
2 − n2

1) − n2(n2
2 − 1) + n1(n2

1 − 1)

n1n2(n2
2 − n2

1) + n2(n2
2 − 1) − n1(n2

1 − 1)
<

(n1 − 1)

(n1 + 1)
(4.6)

is fulfilled.
Rearrangement of (4.6) gives

(n2
1 − 1)(n2 − n1) > 0. (4.7)

The last inequality is fulfilled at all n2 > n1 (n1 > 1).
It follows from the above discussion that the critical radius
at an arbitrary n2 becomes equal to the critical radius at the
perturbation with n1 as M2/M1 increases. Let us dwell on
this point in more detail. In accordance with (4.3), a larger
critical radius corresponds to larger n (n �= 1) at small M2/M1.
As M2/M1 increases, the growth of RS becomes considerably
nonlinear; the smaller n, the earlier and the more prominent
is the nonlinearity. As a result, the interface becomes stable
with respect to long-wave perturbations and less stable to short-
wave perturbations.

As the above calculations indicate (figures 4 and 5), the
analytically detected regularity is preserved when the cell size
is taken into account and a more correct boundary condition is
used; however, the intersections depend not only on M2/M1,
but also on βM2/Q and R∞ (the effect of R0 is negligibly
small). The comparison of figures 4(a) and (b) shows that if
the cell size R∞ is relatively small the increase in βM2/Q
leads not only to the growth of RS but also to the displacement
of intersections towards larger M2/M1. Thus, βM2/Q can
be selected such that all or part of the curves intersect or
do not intersect at all. Then it is possible to control the
sequence of nonequilibrium transitions from the stable to
the unstable growth under the action of perturbations having
different frequencies n. One of the possible instances of the
interface evolution is shown in figure 6. A similar conclusion
is true for the second control parameter R∞ (compare, e.g.,
figures 4 and 5). Notice that at sufficiently large R∞ the effect
of βM2/Q on the intersections is weak (compare figures 5(a)
and (b)).

4.2. Displacement at a constant pressure

Results of the numerical analysis (3.32) (see figures 2(b), 3(b)
and 7) demonstrate that the majority of the phenomena
discussed in section 4.1 are also observed during displacement
at a constant pressure. For this reason, in what follows we only
present some interesting distinctions.

Figure 7. Dependence of RS/R0 on M2/M1 at p0 = 90 Pa. The
curves were plotted taking R∞ = 25 cm, R0 = 2 mm, b = 1.5 mm,
σ = 31.3 × 10−3 N m−1 and μ2 = 230 × 10−3 kg m−1 s−1.

(1) The comparison of figures 2(a) and (b) shows that in this
case RS is not saturated, but increases permanently. This
distinction can be explained by the fact that at p0 = const
the increase in the size leads to the continuous decrease in
the motive force of the displacement (and the instability),
that is, the pressure differential2 (approximately equal to
p0/(R∞ − R0)).

(2) In the case of the translation instability at a constant
pressure the critical radius is given by

RS = R0

[
(M2/M1)(R∞/R0)

2 − 1

1 − M2/M1

]1/2

. (4.8)

The effect of the boundary on the translation stability
is described in [11–14]. However, these studies have a
considerable drawback, that the viscosity of the displacing
fluid is neglected in the solution. As a result, the system
is always unstable with respect to the first-harmonic
perturbation from the very beginning of the displacement
process at any small viscosity ratio. It follows from our
calculations (3.32) and (4.8) that at M2/M1 � (R0/R∞)2

this conclusion holds. However, at M2/M1 > (R0/R∞)2

there is some region of large R0 when the interface
is always translation stable. Different behaviors of the
critical radius (n = 1, M2/M1 is small) at Q = const
and p0 = const are apparent from the comparison of the
insets in figures 4 and 7.

(3) The dependence of RS/R0 on M2/M1 at a constant
pressure (figure 7) is qualitatively similar to the
dependence in figure 4.

2 This unique relationship between the displacement force and the size of the
system is not observed at a constant flow rate.
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(4) As M2/M1 increases, the interface becomes more stable
to long-wave perturbations and less stable to short-wave
perturbations. However, the intersections of the critical
radii related to different n depend on a much larger number
of the problem parameters (α, β , γ , M2, M2/M1, b,
R∞,R0) which cannot be grouped to a smaller number of
complexes (as in the case of Q = const).

5. Conclusion

The stability of the radial displacement front in the Hele–
Shaw cell was calculated at a constant flow rate or a constant
pressure. Unlike in other studies, the finite size of the
cell and the nonzero viscosity of the displacing fluid were
taken into account. In addition to a considerable quantitative
refinement of the results, at least two interesting phenomena
were predicted.

(1) It was found that the sensitivity of the system to the
perturbation of the translation type depends on the ratio of
viscosities of the displaced and displacing fluids and the
cell size. These parameters can be selected such that the
system is stable or unstable to this type of perturbation.

(2) One more interesting phenomenon consists in that any
mode can be made the first unstable mode if we properly
select the ratio of the fluid viscosities or some other
parameters. In other words, the system will be especially
sensitive to perturbations having a certain frequency and
insensitive to the other noise present in the system.
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